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Abstract: Green tea is regarded as a healthy beverage due to the biological action of 

polyphenols, specifically catechins. Researchers investigated the inhibitory effects of green 

tea (Camellia sinensis) plant on both Gram- positive and Gram-negative bacteria. Periodontitis 

is mainly initiated when dysbiosis of the subgingival microbiome takes place. Porphyromonas 

gingivalis is one of the key pathogens involved in the initiation and progression of 

periodontitis when its levels in subgingival biofilm overwhelm the host's immune system. It 

is the main pathogen that is significantly linked to severe periodontal disease. In this study, 

details about P. gingivalis including information about its structure, virulence factors were 

provided. Next, Important points related to green tea, including its active ingredients and 

antibacterial activity, have been clarified. Finally, the objective of this study was to 

demonstrate how green tea has antibacterial effects on P. gingivalis. 
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Introduction: 

        Porphyromonas gingivalis is a rod-shaped anaerobic pathogenic bacterium that belongs to the group 

Bacteroidetes (1). The bacteria are members of more than 500 species living in the mouth, and can multiply 

in many cells, causing large-scale destruction of peripheral lesions (2). HME aggregation in the cell surface 

of P. gingivalis results in black pigmentation on the blood agar surface (3). It is able to survive in deep 

pockets of the period by fermenting amino acids, which are very rare places with sugar metabolism (4). 

Some strains have capsules that inhibit host cell phagocytosis and help bacteria survive in hostile 

environments (5). 

As a member of Gram-negative bacteria, It has an outer and cytoplasmic membrane, the outer membrane 

contains porins, Omp A-like protein, and other important proteins  (7). Several strains of P. gingivalis 

develop a capsule that precludes its phagocytosis by the host cells (5). P. gingivalis adherence to the 

epithelial and bacterial cells surfaces is crucial for colonization and survival inside infection sites. Its 

adhesive capacity is mediated by fimbriae and haemagglutinins, as well as other adhesins found on its 

surface. However, subgingival colonization requires the production of particular molecules important for 

bacterial persistence, such as those involved in oxidative stress antagonism and nutrient intake (8, 9). 

Periodontal disease 

Periodontal disease are group of infectious diseases that cause gingival inflammation, periodontal 

ligament breakdown, alveolar bone resorption, and tooth exfoliation. The major cause of development 

and progression of these infections is the dental biofilm. Presence of a dysbiotic dental biofilm on the 

teeth's surfaces leads to series of inflammatory events in the periodontium, ranging from mild reversible 

conditions i.e., gingivitis, to periodontitis associated with tissue destruction and tooth exfoliation. 
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Periodontal disease are one of the most prevalent illnesses, according to the World Health Organization, 

with tooth loss affecting 5% to 15% of the worldwide population as a result of aggressive types of 

periodontitis  (10). 

Role of P. gingivalis in periodontal disease  

Experimental animal models showed that periodontitis is a polymicrobial infection caused by a 

synergistic microbial community instead of individual pathogens. The role of P. gingivalis in such a 

microbial community is to shift the balance from homeostasis to dysbiosis  (11). Therefore, in periodontitis, 

there is an alteration in host-microbial equilibrium, where even commensal bacteria can trigger damaging 

inflammation. After six weeks of inoculating P. gingivalis in to a specific-pathogen-free periodontitis-

mouse model, there was substantial alveolar bone loss  (12).  

In periodontitis, P. gingivalis adopts a variety of strategies to collaborate with other pathogens and escape 

immune clearance. It has the ability to bypass and manipulate host immunological mechanisms in order 

to aid colonization and survival of its own and other pathogenic microorganisms (13). According to the 

keystone pathogen theory, P. gingivalis, even at low abundance, can induce periodontitis by causing 

dysbiosis in the commensal bacterial community, which leads to periodontitis (14). Furthermore, studies 

have shown that P. gingivalis has negative effects on tooth supporting systems  (15, 16). 

Virulence factors  

Lipopolysaccharide (LPS) 

LPS is a pathogen-associated molecular pattern (PAMP) which has been recently defined as microbe-

associated molecular pattern (MAMP) (17). It is an integral part of the cell wall of Gram-negative bacteria 

i.e., outer cell membrane  (18). The basic units of LPS are lipid A and core, as well as long polysaccharide 

O-antigen repeats  (19). LPS was termed as endotoxin due to the toxic effect and the tendency to promote 

destructive inflammatory changes. The fatty acid acyl chain producing lipid A is responsible for the 

structural variations between LPS from different bacterial species. The varied manner in which host cells 

identify bacterial species might be explained by variations in LPS structure (13). P. gingivalis endotoxins 

have a significant role in the initiation and progression of periodontitis. P. gingivalis LPS lipid A promote 

the immunological reactions in gingival tissues, creating a favorable condition for bacteria to thrive and 

eventually leading to periodontal disease (20). Furthermore, when P. gingivalis LPS is co-cultured with F. 

nucleatum, its antigenicity and cytokine expression were increased, and the lipid A structure is altered due 

to upregulation of lpxA and lpxD genes involved in LPS synthesis (21).  

Fimbriae 

The outer surface membrane of P. gingivalis contain specific protrusions, called fimbriae. The role of P. 

gingivalis fimbriae in the pathogenesis of periodontitis was the subject of many studies (13). Two varieties 

of P. gingivalis fimbriae were reported; long fimbriae (major fimbriae) with FimA subunit proteins and 

short fimbriae (minor fimbriae) containing Mfa1 subunit proteins. Despite their varying amino acid 

content and antigenic characteristics, FimA and Mfa1 are both important for tissues immune reactions 

and participated in the development of periodontal diseases (22). Fibrinogen, fibronectin, proline-rich 

proteins and glycoproteins, statherins, and lactoferrin are among the host molecules and oral substrates 

used by P. gingivalis fimbriae to adhere to infected sites. This connection between extracellular and 

intracellular environments is crucial for cell anchorage, migration, survival and intracellular signal 

transduction cascades. Thus, the presence of P. gingivalis can delay the healing of the diseased periodontal 

tissue (23). P. gingivalis coaggregation with Actinomyces viscosus, Treponema denticola and Streptococcus 

gordonii has been described to be mediated by fimbriae. Utilization of the complement system by the Long 

fimbriae for evasion of the  immune system was also reported (13).  



J. Bagh. Coll. Dent. Vol. 36, No. 1. 2024                                                                                                               Abdulrazaq et al. 
 

 

72 

 

Gingipains 

They are cysteine proteinase that known as "trypsin-like" enzymes (24). They are categorized into two 

kinds: arginine specific proteinase (RgpA and RgpB) and lysine specific proteinase (Kgp) (25). they are 

involved in periodontitis pathogenesis and are responsible for 85% of P. gingivalis' extracellular 

proteolytic actions (26). Gingipain inhibitors have been investigated by several studies due to their potential 

therapeutic effectiveness in reducing the pathogenicity of P. gingivalis (27). They increase nutrition 

acquisition through hemagglutination, hemolysis, and iron absorption from heme inside infected 

periodontium (28). Other host systems that gingipain might target include the blood coagulation pathway 

and the complement system (29, 30). The anaerobic microorganism's ability to colonize the oral mucosa and 

be a pathogenic bacterial species in the oral cavity is aided by these gingipain biological features. 

Furthermore, gingipains participate in the fimbria-mediated adhesion process by modifying and 

maturing pro-fimbrilin into fimbriae (31).  

Capsule 

Capsule is an exterior outer component that represents the bacteria's outline fence. water and 

polysaccharides are most often constituents of the capsules which prevent dehydration. Bacteria that have 

been encapsulated usually withstand the host tissues clearance processes, therefore the capsule acts as a 

protective bacterial component (13). Chemical components of P. gingivalis capsules vary, allowing various 

strains to be classified into unique K-serotypes, whereas some strains are not encapsulated Which make 

them more susceptible to be eliminated via macrophages and dendritic cells. On the other hand, 

encapsulated strains are shielded from phagocytosis by the capsule and their survival rate are much 

higher (5, 32).  

T cell immunity stimulation 

T cells participate in a range of inflammatory disorders and play a key role in host immune responses. T 

cells have been reported to have a lesser proliferative capacity in periodontitis patients, indicating a 

diminished T cell activity(33). Various periodontal infections can inhibit T cell activation (34) (35). To evade 

the host's adaptive immunological response, P. gingivalis may cause reduction of IL-2 production and T 

cell proliferation due to the effect of gingipain Rpgs (36). In a periodontitis animal model, the alveolar bone 

loss induced by P. gingivalis was shown to be less in IFN- and IL-6-deficient mice, indicating a deleterious 

effect of Th1 and Th2 cells on the periodontal tissues (37). 

Hemagglutinins 

The virulence of different pathogenic bacteria may be stimulated by the effect of hemagglutinins (38, 39). 

These hemagglutinins on cell surfaces have been identified to function with fimbriae as fimbrial adhesins 

or non-filamentous surface molecules as non-fimbrial adhesins to allow bacteria to adhere to host cells (40). 

Hemin absorption from erythrocytes, which is required for P. gingivalis growth, is also linked to 

hemagglutinin pathogenicity (41).  

Outer membrane proteins 

The cell wall of Gram-negative bacteria has a sophisticated multilayered structure. The term cell envelope 

is sometimes used to describe the onion-skin nature of this cell wall. The inner cytoplasmic membrane, 

which is made up of a thin peptidoglycan, is connected to the asymmetrical outer membrane. The 

structural integrity of the cell envelope is maintained by complex LPS, lipoproteins, and peripheral and 

transport proteins of the outer membrane via linking it to the peptidoglycans. About 20 main proteins 

make up the outer membrane of P. gingivalis most of them were heat modifiable (42).  
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Outer membrane vesicles 

P. gingivalis interactions with its surroundings at a distance from the cell surface may be mediated by 

outer membrane vesicles. These vesicles include proteases that help in collagen breakdown, facilitate 

bacterial adhesion to cells, and enhance attachment amongst nonaggregating bacteria like Capnocytophaga 

ochracea and Eubacterium saburreum, implying that they may be involved in periodontal disease 

development (43).  

Green tea 

Green tea (GT) has been used as a medicinal and a healthy beverage since earlier. Chinese emperor Shen 

Nung discovered tea quite accidentally in 2737 B.C. (44). He had a habit of boiling his drinking water before 

drinking it, and one day, some leaves from a nearby tree fell into the jar resulting in an exceptional tasting 

and perfumed drink. Recently, more than 3 billion cups of tea are estimated to be consumed every day 

being the second most common drink after water (45).  It is made by macerating and heat drying the leaves 

of the Camellia sinensis plant (46). Because of the biological activities of its ingredients, the role of green tea 

on human health is receiving further focus. It has a high concentration of polyphenols, mostly catechins 

derivatives, which are believed to protect against cancer and cardiovascular disease (47). Due to the 

presence of high content of catechins, specifically epigallocatechin-3-gallate (EGCG), GT has been shown 

to have a wide spectrum of antimicrobial action (48). Moreover, Catechins have been found to interact with 

the cell wall and membrane of bacterial cells (49), causing irreversible damage to the cells by the formation 

of hydrogen peroxide (50).  

Chemical structure of green tea  

The chemical components of GT leaves have been extensively studied. Polyphenols are the primary 

components of tea leaves (51).  Diffusion and solubility of the constituents are major factors to enhance the 

extraction processes to obtain crude extracts of the plants’ leaves (52). Longer extraction periods enhance 

cell wall permeability in green tea leaves, whereas higher temperatures promote solubility constants. This 

allows more catechins from tea and other chemicals to be extracted. Flavonols and related flavonoids are 

integral components of tea plants (Camellia sinensis L.O. Kuntze) (53). Multiple flavonol derivatives e.g. 

myricetin, quercetin, and kaempferol are glycosylated to create stable flavonol glycosides (FGs) via 

interactions with sugar molecules (e.g., glucose, galactose, and rutinose) (54). Catechins (flavan-2-ols) like 

epicatechin (EC), epicatechin-3-gallate (ECG), epigallocatechin (EGC), and EGCG are the most frequent 

flavonoids identified in GT (55).  

Antimicrobial effects of green tea  

GT has been shown to exhibit antibacterial activities against Gram-positive and Gram-negative bacteria, 

fungi, and viruses (56, 57). GT's antibacterial efficacy is attributed to polyphenolic catechins. The antibacterial 

activity of EGCG, the main constituent of GT catechins, alone and in conjunction with various antibiotics 

have been thoroughly investigated against a variety of bacteria, including multidrug-resistant strains such 

as methicillin-resistant Staphylococcus aureus and Stenotrophomonas maltophili (57). When GT was used 

systemically as a traditional antibacterial agent, it was reported that it had a poor antibacterial activity. 

When administered as a topical treatment for superficial bacterial infections, GT catechins can be effective 
(46, 58). Incorporation of theses extracts with vacuum cleaner filters and face masks was also applied in order 

to reduce airborne pollution. It is useful as an antibiotic combination ointment for the prevention of 

impetigo (46, 59). The MIC values of GT aqueous extracts demonstrated significant antibacterial action 

against the primary dental biofilm colonizers (60). 
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Antibacterial effects of green tea against Porphyromonas gingivalis 

Various studies attempted to establish the minimum inhibitory concentration (MIC) of GT extracts against 

P. gingivalis. Fournier-Larente et al., reported MIC value of 6.25 mg/ml (61). While Araghizadeh et al. (62), 

reported that the MIC value of GT aqueous extracts against clinically isolated P. gingivalis was 12.5 mg/ml. 

In another study, it was reported that 0.5% of GT aqueous extracts prepared by maceration showed 

inhibitory effects against  P. gingivalis (63). The MIC values of GT aqueous extract across the latter 

experiments, however, are inconsistent. This may be explained by the various phytochemical 

compositions of the studied extracts, since different extraction techniques for herbs may have produced 

varying amounts of active ingredients. 

The presence of caffeine in GT aqueous extract, which has been shown to have antibacterial properties 

against Gram-negative bacteria, may be responsible for the antibacterial activity of the compound (64). In 

earlier investigations, GT catechins have been the most frequently identified phytochemical component 

with antibacterial action against P. gingivalis. (65-67).  

Conclusion 

Based on previously reviewed literature, GT contains beneficial antimicrobial properties. It is also clear 

from several in vitro studies that GT extracts have an inhibitory action against P. gingivalis. Isolation of the 

bioactive ingredients of GT aqueous extracts for further verification of their antibacterial properties and 

studying the antibacterial effects of extracts on the other bacteria of the red complex, i.e., T. denticola and 

Tannerella forsythia may enrich future research in this area. 
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 للشاي الأخضر ضد البورفيروموناس جينجيفاليس: مراجعة الأدبيات  بكترياالمضاد للالتأثير 

 , دنيش مارتين حيدر رعد عبدالباقي ,  مرتضى عماد عبدالكريم  
 المستخلص 

الآثار المثبطة لنبات الشاي الأخضر )كاميليا سينينسيس( على كل    يعتبر الشاي الأخضر مشروبا صحيا بسبب العمل البيولوجي لبوليفينول الشاي الأخضر ، وتحديدا الكاتيكين. حقق الباحثون في

في الأغشية الحيوية تحت اللثة قدرة المضيف على الدفاع ضدها ، فإن العامل الممرض الرئيسي   البورفيروموناس جينجيفاليس من البكتيريا إيجابية الجرام وسالبة الجرام.  عندما  تتجاوز مستويات 

. في هذه الدراسة ، البورفيروموناس جينجيفاليسا بأمراض اللثة الشديدة.  كان الهدف من هذه الدراسة الأدبية هو إظهار كيف أن الشاي الأخضر له تأثير مضاد للبكتيريا على يرتبط ارتباطا كبير

الضراوة التي تعزز التهاب اللثة وتقدمه. بعد ذلك تناولنا بعض النقاط المهمة المتعلقة بالشاي ،  ، بما في ذلك معلومات حول هيكلها. عوامل    البورفيروموناس جينجيفاليسقدمنا أولا تفاصيل حول  

 بما في ذلك مكوناته النشطة وأنشطته المضادة للبكتيريا.
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