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Abstract: Background: Dental implants have been used to replace lost teeth over the 

past ten years because of their high success rate. Studies have shown that both Gram-

positive and Gram-negative bacteria can colonize and form biofilms on the surface of an 

implant. Chlorhexidine acts on the inner cytoplasmic membrane to reduce plaque 

accumulation, making it an antiplaque and antigingivitis agent. The current study aims at 

elucidating and comparing Quercitrin with the well-known antibacterial chlorhexidine in 

their antibacterial ability to improve the dental implant procedure. Materials and methods: 

From each primary positive culture on blood, UTI chromogenic agar, and Mannitol salt agar 

media, a single colony was taken and identified, stained with Gram's stain, and examined 

under a light microscope. Results: The results revealed that the minimum bactericidal 

concentration (MBC) and the minimum inhibition concentration (MIC) of chlorohexidine 

were the same as 3.12 µg/mL for all isolated bacteria that have been used in this study, 

which was the lowest concentration used that showed a statistically significant difference. 

The MIC of Quercitrin for the bacteria Streptococcus. mutans, S. aureus, and P. gingivalis was 

1600 µg.ml-1 and 800 µg.ml-1 for the E. faecalis, while the MBC for S. mutans, S. aureus, and 

P. gingivalis was 3200 µg.ml-1 and for the E. faecalis was 1600 µg.ml-1. Conclusion: In 

comparison with chlorhexidine, Quercitrin in a certain concentration has the same 

antibacterial effect, which could be a novel discovery to be used as a part of the dental 

implant industry as a peri-implant’s vital item for inflammation's control and prevention.  
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Introduction    

       Over the past ten years, dental implants have had a remarkable success rate of over 95% and have 

been widely used to replace lost teeth (1-3). Biological complications, including peri-implantitis, have a 

10–40% incidence rate despite the astounding success rates for dental implants (4,5). Peri-implantitis is a 

bad result of bacteria spreading around the implants. It destroys the alveolar bone and the gum tissue 

that supports it. Peri-implantitis may happen soon after the placement of the implant, and it appears to 

progress in a non-linear pattern (6-8).  The development of a biofilm surrounding the surface of the 

implants and a severe inflammatory response of the soft tissue against bacterial infections are behind 

peri-implantitis, which can also damage the hard tissue and cause loss of bone mass and osteolysis (9-11).  

Studies have shown that some Gram-positive bacteria, such as enterococci, Staphylococcus aureus 

Rosenbach, and Streptococcus mutans Clark, can live on implants and form biofilms on their surface. 

The main culprits behind the onset of this condition are Gram-negative bacteria, including 

Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans (12) (13). 

Chlorhexidine is one of the antimicrobial agents. It is an agent that eliminates gingivitis and plaque by 

penetrating the inner cytoplasmic membrane (14-16). Rinsing with 0.12% chlorhexidine gluconate once 

daily may be a significant bonus for oral health for patients with implants. However, when used as a 
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chemical agent, gel, or irrigation solution in a full-mouth disinfection approach, it did not offer extra 

microbiological and/or clinical benefits over mechanical treatment alone (17) (18). 

Among the many bacterial types that Quercitrin may destroy are those that cause infections in the 

urinary tract, gastrointestinal tract, respiratory system, and skin (19-21). The solubility of Quercitrin (20,22) 

and its interaction with the bacterial cell membrane (23), which is greatly influenced by the presence of 

Quercitrin's hydroxyl groups (24,) (25), have been associated with Quercitrin's antibacterial capacity. 

The bactericidal effects of Quercitrin are often more effective against Gram-positive bacteria than Gram-

negative ones (26) (27). There is a chance that the differences in Quercitrin susceptibility are due, at least in 

part, to differences in the cell membrane composition between Gram-positive and Gram-negative 

bacteria. The effectiveness of some Quercitrin derivatives against Gram-negative bacteria was shown to 

be higher than that against Gram-positive bacteria (20,24). A shift in its efficacy against some bacteria 

might result from phosphorylation or sulfation at different hydroxyl groups, which could alter 

Quercitrin's solubility (24) (28) .This research is fresh, unique, and significant since, as far as currently 

aware, no comparable investigations have been conducted in Iraq. 

Peri-implantitis can contribute to implant loss. The formation of biofilm in the tissues surrounding 

dental implants leads to peri-implantitis, which in turn triggers inflammation of the peri-implant 

mucosa and, eventually, the gradual loss of the supporting tissue (7) 29) (30). The bacterial species linked to 

peri-implantitis are diverse and include Porphiromonas gingivalis, Salivarius salivarius, and Prevotella 

intermedia (30,31). Researchers found a higher proportion of P. gingivalis, Tannerella forsythia, and 

Treponema denticola in peri-implantitis samples. Some researchers also found pathogens like 

Pseudomonas aeruginosa and Staphylococcus aureus, which act opportunistically during the infectious 

process. This biofilm complex also includes viruses and fungi (32-34). 

Chlorhexidine has significantly less cytotoxicity. It can't, however, break down necrotic pulp tissue, and 

its effectiveness against gram-negative bacteria is rather low. Therefore, researchers continue to strive 

for the ideal irrigating solution for endodontic therapy in primary and permanent teeth (35) (36). In an 

effort to enhance the dental implant process, the goal of the current study was to clarify and compare the 

antibacterial properties of Quercitrin and the widely recognized antibacterial chlorhexidine.  

Materials and Methods 

Gram-negative and gram-positive bacterial isolates were obtained from the mouth cavities of 

different patients who routinely visit different dental clinics. Blood agar, Mannitol Salt agar, UTI 

Chromogenic agar, Brain Heart Infusion broth, Brain Heart Infusion agar, and Muller Hinton broth were 

used for bacterial cultures. Chlorhexidine and Quercitrin were purchased from HiMedia, USA. 

Identification of bacterial isolates 

A single colony was cultured on differential and selective media, including Blood agar, UTI 

chromogenic agar, and Mannitol salt agar. Depending on phenotypic features such as colony size, color, 

borders, shape, pigments' nature, texture, and elevation, the bacterial strains were identified and stained 

with Gram's stain for light microscopy. The identification and purification of each isolate were carried 

out following standard microbiological methods (37,38), and confirmed by VITEK 2 to attain the very 

last diagnostic. 

Culture and media preparation 

All culture media were prepared following the manufacturer's recommendation. All media were 

sterilized in an autoclave at 121 ◦C for 15 minutes (39). 

Blood agar: The blood agar medium (HiMedia M089-500G/ USA) was prepared by dissolving 40 g of 

blood agar base in 1000 ml of distilled water. The medium was autoclaved at 15 psi and 121 ºC for 15 
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min, then cooled to 50 ºC and 5% of fresh human blood was added. For the cultivation of the bacterial 

isolates and to determine the bacterial isolate’s ability to cause blood hemolysis, this medium was used 

as an enrichment medium. 

HiMedia M118-100/USA served as the mannitol salt agar in this study. It served as a selective medium 

for staphylococcus species differentiation and isolation. Staphylococcus and Micrococcus prefer the 

media containing 7.5–10 NaCl, while Staphylococcus exhibits a differential response (39). 

UTI chromogenic agar: Forty-three grams of Chromogenic UTI Medium (HiMedia M1418-hicrome-uti-

agar/USA) were suspended in 1L of distilled water, then mixed and autoclaved for 15 minutes at 121°C. 

The UTI was cooled down to 50°C and then poured into sterile Petri dishes. 

Brain Heart Infusion Agar: Forty-three grams of Brain Heart Infusion Agar (HiMedia M211-100G/USA) 

were suspended in 1L of distilled water, then mixed and autoclaved for 15 minutes at 121°C. The UTI 

was cooled down to 50°C and then poured into sterile Petri dishes. 

Müller Hinton Broth: Twenty-one grams of Müller Hinton broth powder (HiMedia M 391-500G/USA) 

were suspended in 1L of distilled water. The mixture was autoclaved for 15 minutes at 121°C. 

Müller Hinton Agar: Thirty-eight grams of Müller Hinton agar powder (HiMedia M173-500G/USA) 

were suspended in 1L of distilled water. The mixture was autoclaved for 15 minutes at 121°C. 

Gram stain solution: To study cell arrangement and morphology and to differentiate between Gram-

positive and Gram-negative bacteria, the gram stain solution was used (40). Four solutions were 

incorporated into the Gram stain mixture, which was supplied by SynBio Technologies (USA). These 

solutions are: crystal violate, iodine, absolute alcohol, and safranine. 

Chlorhexidine and Quercitrin: Chlorhexidine (HiMedia PCT1146-25G/USA) was prepared in 

concentrations of 3200, 1600, 800, 400, 200, 100, 50, 25, 12.5, 6.25, 3.12 µg.ml-1, and Quercitrin (HiMedia 

RM6191-25G/USA) in concentrations of 3200, 1600, 800, 400, 200, 100, 50, 25, 12.5, 6.25, 3.12 µg.ml-1. 

Antibacterial Assay of Chlorhexidine and Quercitrin Using the Microdilution Method 

The antibacterial activity of Chlorhexidine and Quercitrin was measured using the broth microdilution 

technique as described by (41). For the determination of the Minimum Inhibitory Concentration (MIC) 

and Minimum Bactericidal Concentration (MBC) of these two materials towards oral pathogenic 

bacteria, three Gram-positive bacteria (Streptococcus mutans, Staphylococcus aureus, and Enterococcus 

faecalis) and one Gram-negative bacteria (Porphyromonas gingivalis) were cultivated in Brain Heart 

Infusion Broth (BHIB) and incubated in anaerobic conditions at 37 C for 24 h. Firstly, serial dilutions of 

Chlorhexidine and Quercitrin were carried out in 50µL of sterilized Müller-Hinton broth in the wells of 

a 96-well microplate (Thermo Scientific™/USA) to get the following concentrations: 3200 µg.mL-1, 1600 

µg.mL-1, 800 µg.mL-1, 400 µg.mL-1, 200 µg.mL-1, 100 µg.mL-1, 50 µg.mL-1, 25 µg.mL-1, 12.5 µg.mL-1, 

6.25 µg.mL-1, 3.12 µg.mL-1, respectively. 50 µL of bacterial suspension with a 1106 CFU/mL 

concentration was transferred to each well containing Chlorhexidine and Quercitrin separately. The 

inoculated 96-well microplate was incubated in anaerobic conditions at 37°C for 24 hours. The MIC for 

each strain was determined by observing the wells, with the first well having no bacterial growth. The 

MBC was identified by transferring 10 µL from wells containing no growth and culturing them on Brain 

Heart Infusion Agar (BHIA). The clear plates represent the minimum bactericidal concentrations that 

reduce 3 logs of bacterial growth. By using an ELISA plate reader (BioTek, USA) at 630 nm, the 

absorbance of the samples was measured. 
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Statistical analysis 

For data analysis, Prism 9 (GraphPad Software, USA) and SPSS (Statistical Package for Social Science, 

version 21) were utilized. For the purpose of descriptive analysis, the findings are shown as bar charts 

with mean values and standard deviations. A one-way ANOVA and the post-hoc Tukey's HSD test were 

used. P-values of more than 0.05, less than 0.05, and less than 0.01 indicated non-significant, significant, 

and highly significant differences, respectively. 

 Results 

The culture revealed four different kinds of bacteria. The Prophyromonas gingivalis showed smooth, 

shiny, and convex colonies on blood agar, as shown in Figure (1.a), The Streptococcus mutans appeared in 

blood agar as small and pinheaded colonies, as shown in Figure (1.b). Staphylococcus aureus produced 

yellow colonies with yellow zones, as shown in Figure (1.c)). Enterococcus faecalis (Figure. 1.d). 

  

 

Figure 1: Colonies on incubated bacteria (a.) prophyromonas gingivalis (b.) Streptococcus mutans (c.) 

Staphylococcus aureus (d.) Enterococcus faecalis 

Gram staining for these species showed one-gram negative species, while the others were positive gram 

species as listed in Table 1. 

Table 1: bacterial gram stainin. 

Bacterial species Gram stain 

P. gingivalis Gram Negative 

S. mutans Gram Positive 

S. aureus Gram Positive 

E. faecalis Gram Positive 

 

The antibacterial effect of Chlorhexidine and Quercitrin on S. mutans, S. aureus, E. faecalis and P. 

gingivalis by using the micro dilution method is shown in Figure. 2. 
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Figure 2 Determining the MIC of Quercitrin and Chlorohexidine using micro dilution method (96 

well plates).. 
 

The results of the absorbance are shown in Figure 3, Table 2. The results of Minimum Inhibition 

Concentration (MIC) of Chlorohexidine and Quercitrin on all isolated bacterial are shown in Figure 4, 

Table 3, and Table 4. 

Table 2. Determining the MIC and MBC of Quercitrin and Chlorohexidine using ELISA plate reader Method. 

 1 2 3 4 5 6 7 8 9 10 11 12 

CALL 

Calc00 

Well 

RSLT 

0.069 

SMP1 

0.090 

SMP9 

0.400 

SMP17 

0.498 

SMP25 

0.604 

SMP33 

0.622 

SMP41 

0.617 

SMP49 

0.598 

SMP57 

0.621 

SMP65 

0.573 

SMP73 

0.570 

SMP81 

0.048 

SMP89 

CALL 

Calc00 

Well 

RSLT 

 

0.074 

SMP2 

 

0.057 

SMP10 

 

0.051 

SMP18 

 

0.248 

SMP26 

 

0.049 

SMP34 

 

0.046 

SMP42 

 

0.048 

SMP50 

 

0.059 

SMP58 

 

0.518 

SMP66 

 

0.579 

SMP74 

 

0.620 

SMP82 

 

0.044 

SMP90 

CALL 

Calc00 

Well 

RSLT 

 

0.055 

SMP3 

 

0.088 

SMP11 

 

0.364 

SMP19 

 

0.471 

SMP27 

 

0.508 

SMP35 

 

0.631 

SMP43 

 

0.595 

SMP51 

 

0.557 

SMP59 

 

0.590 

SMP67 

 

0.594 

SMP75 

 

0.574 

SMP83 

 

0.045 

SMP91 

CALL 

Calc00 

Well 

RSLT 

 

0.078 

SMP4 

 

0.055 

SMP12 

 

0.049 

SMP20 

 

0.051 

SMP28 

 

0.046 

SMP36 

 

0.051 

SMP44 

 

0.053 

SMP52 

 

0.389 

SMP60 

 

0.607 

SMP68 

 

0.584 

SMP76 

 

0.564 

SMP84 

 

0.045 

SMP92 

CALL 

Calc00 

Well 

RSLT 

 

0.051 

SMP5 

 

0.052 

SMP13 

 

0.054 

SMP21 

 

0.061 

SMP29 

 

0.089 

SMP37 

 

0.105 

SMP45 

 

0.157 

SMP53 

 

0.162 

SMP61 

 

0.159 

SMP69 

 

0.161 

SMP77 

 

0.142 

SMP85 

 

0.047 

SMP93 

CALL 

Calc00 

Well 

RSLT 

 

0.076 

SMP6 

 

0.056 

SMP14 

 

0.051 

SMP22 

 

0.045 

SMP30 

 

0.045 

SMP38 

 

0.045 

SMP46 

 

0.045 

SMP54 

 

0.102 

SMP62 

 

0.157 

SMP70 

 

0.157 

SMP70 

 

0.161 

SMP86 

 

0.048 

SMP94 

CALL 

Calc00 

Well 

RSLT 

 

0.048 

SMP7 

 

0.061 

SMP15 

 

0.379 

SMP23 

 

0.630 

SMP31 

 

0.639 

SMP39 

 

0.695 

SMP47 

 

0.702 

SMP55 

 

0.717 

SMP63 

 

0.720 

SMP71 

 

0.703 

SMP79 

 

0.659 

SMP87 

 

0.047 

SMP95 

CALL 

Calc00 

Well 

RSLT 

 

0.077 

SMP8 

 

0.068 

SMP16 

 

0.050 

SMP42 

 

0.046 

SMP32 

 

0.047 

SMP40 

 

0.046 

SMP48 

 

0.045 

SMP56 

 

0.044 

SMP64 

 

0.586 

SMP72 

 

0.640 

SMP80 

 

0.628 

SMP88 

 

0.048 

SMP96 
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Figure 3: The antibacterial effect of Chlorhexidine and Quercetin on A) S .mutans, B) S.aureus, C )E. 

faecalis,  and  D) P. gingivalis by using an ELISA plate reader 

 

Table 3: Antibacterial effect of Chlorohexidine Table 4: Antibacterial effect of Quercetin 

Bacterial strain MIC (µg.ml-1) MBC (µg.ml-1) Bacterial strain MIC (µg.ml-1) MBC (µg.ml-1) 

S. mutans 
3.12 

3.12 

3.12 

3.12 

3.12 

3.12 

S. mutans 
1600 

1600 

1600 

800 

800 

800 

S. aureus 
3.12 

3.12 

3.12 

3.12 

3.12 

3.12 

S. aureus 
1600 

1600 

1600 

800 

800 

800 

E. faecalis 
3.12 

3.12 

3.12 

3.12 

3.12 

3.12 

E. faecalis 
800 

800 

800 

1600 

1600 

1600 

P. gingivalis 
3.12 

3.12 

3.12 

3.12 

3.12 

3.12 

P. gingivalis 
1600 

1600 

1600 

800 

800 

800 
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Figure 4: The results of Minimum Inhibition Concentration (MIC) and the Minimum Bactericidal 

Concentration (MBC) of Chlorohexidine and Quercetin on all isolated bacterial. 

 

              Discussion 

              Bacterial Isolates Identification  

The culture revealed four different kinds of bacteria, which were the most common bacterial growths 

found among the isolates. Prophyromonas gingivalis is one of the bacterial isolates that shows smooth, 

shiny, and convex colonies on blood agar. The bacteria show a white colony rather than its normal black 

color on blood agar, as shown in Figure (1.a), which sometimes refers to the mutation that some of the P. 

gingivalis strains exhibit no pigmentation on blood agar. These strains have a nonsense mutation in the 

wbpB gene, which is responsible for the pigment-less phenotype of the strain (42) (43). 

The Streptococcus mutans exhibited gamma hemolysin on blood agar; the colonies form irregular, 

heaped, rough colonies resembling frosted glass, mostly crumbly; whole colonies can be picked from the 

agar (44-46). as shown in Figure (1.b). On mannitol salt agar, Staphylococcus aureus produced yellow 

colonies with yellow zones, as shown in Figure (1.c) because mannitol can be fermented by S. aureus, 

and an acidic byproduct was formed, which caused the phenol red to turn yellow in the agar (47) (48). 

Enterococcus faecalis (Figure. 1.d) produced green-colored colonies on UTI chromogenic agar due to ß-

glucosidase production. Green to blue-colored colonies were produced by vancomycin-resistant E. 

faecalis on chromogenic agar due to a substrate's hydrolysis that detects α-glucosidase activity (49) (50). 

Gram staining for these species showed one-gram negative species, while the others were positive gram 

species, as listed in Table 1 

In the oral cavity, diverse colonization species are found, depending on the conditions or even the region 

of this cavity, and according to the microorganism's biochemical characteristics and metabolism, the 

microorganisms are distributed. One essential component of all microbial sites is the salivary 

microbiome. Although in all oral sites there is an overlap of all species, the species of Streptococcus 

mutans, Prevotella spp., Neisseria spp., and Gemella spp. are more frequently found in the saliva (51-53). 

Nevertheless, it was found that bacteria present on the tongue are not primarily the same as those 

located on the hard palate. S. salivarius and Rothia spp. Colonize mainly the surfaces of the tongue or 
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tooth; the hard palate is colonized only by Simonsieur spp.; and the subgingival and gingival tissues are 

typically colonized by Treponema spp (33) (54) (55). 

Antibacterial Assay of Chlorhexidine and Quercitrin Using the Microdilution Method and the ELISA 

Plate Reader Method. 

The antibacterial effect of Chlorhexidine and Quercitrin on S.mutans, S. aureus, E. faecalis, and P. 

gingivalis by using the microdilution method is shown in Fig. 2, and the absorbance of the samples is 

shown in Table 2. The results revealed that the Minimum Inhibition Concentration (MIC) and the 

Minimum Bactericidal Concentration (MBC) of Chlorohexidine were at the same concentration of 3.12 

µg/mL for all isolated bacteria that have been used in this study, as shown in Table 3, which was the 

lowest concentration used. On the other hand, the MIC of Quercitrin for S. mutans, S. aureus, and P. 

gingivalis was 1600 µg.ml-1, and 800 µg.ml-1 for the E. faecalis, while the MBC for S. mutans, S. aureus, 

and P. gingivalis was 3200 µg.ml-1, and for the E. faecalis, 1600 µg.ml-1, as shown in Table 4. 

The results confirm that chlorohexidine is a highly effective substance against oral cavity microbiomes 

and pathogens at the lowest concentration that has been used. Quercitrin was revealed to have the same 

antibacterial activity as Chlorohexidine by using it at higher concentrations. The use of Chlorohexidine 

in oral healthcare and dentistry continues to be common and widespread. This includes the caries, 

dental plaque, and oral hygiene management; peri-implant, gingivitis, and periodontitis disease; oral 

surgery, root canal therapy, and associated complications; oral mucosal disease; and as a practice to 

reduce the aerosolization of microbes during dental procedures (56) (57). For instance, chlorhexidine, as a 

mouthwash in dentistry, has a full-mouth effect on fungi, viruses, and bacteria that cause different oral 

infectious diseases and not only has locally antimicrobial effects (58-60). Quercitrin also has many 

pharmacological effects, such as anti-tumor, anti-oxidation, anti-inflammation, hypolipidemic, and 

hypoglycemic (61-63). On the other hand, failures of an implant system that cause diseases are still 

continuously reported. For instance, as a result of a multifactorial process, peri-implantitis takes hold in 

the oral cavity, where the overproduction of reactive oxygen species (ROS) seems to play the dominant 

role (64.65). Peri-implantitis is triggered by anaerobic, microaerophilic, or gram-negative bacteria, as well 

as the development of an inflammation outbreak that can lead to the production of ROS. As soon as it 

formed, the ROS triggered a vicious circle by promoting the production of pro-inflammatory cytokines 
(66) (67). According to the results of (68), in the case of peri-implantitis, it significantly reduces saliva's 

overall antioxidant capability. In order to create innovative, inherently antioxidant Quercitrin-based 

biomaterials that might be used in both dentistry and medicine as bone implant replacements and 

components for dental implants (69-72). 

Conclusion 

At a specific concentration, Quercitrin exhibits the same antibacterial effects on bacteria as 

chlorohexidine, presenting a promising discovery for the dental implant industry as a crucial component 

for peri-implant health and inflammation control and prevention.  
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 يوسف  عادل ون، حسي حسنفلاح  ،صافي نبيل ايهاب  ، حميد كريم حسين          

 المستخلص: 
ثبت أن المفقودة.  الأسنان  لتعويض  نطاق واسع  استخدامها على  وتم  عالية  نسبة نجاح  الماضية  العشر  السنوات  مدى  الأسنان وعلى  زراعة  الجرام   حققت  الجرام وسالبة  إيجابية  البكتيريا 

خلي، مما يجعله عاملاا مضاداا للبلاك ومضاداا  تستعمر وتطور الأغشية الحيوية على سطح الغرسة. يقلل الكلورهيكسيدين من تراكم البلاك عن طريق التأثير على الغشاء السيتوبلازمي الدا

 تهدف مع المضاد الحيوي الكلورهيكسيدين المعروف في قدرتهما المضادة للبكتيريا في تحسين إجراء زراعة الأسنان. الكيرسيترين لالتهاب اللثة. تهدف الدراسة الحالية إلى توضيح ومقارنة 

 المواد وطرائق العمل: من .الأسنان زراعة اداء تحسين في للبكتيريا المضادة قدرته في المعروف للبكتيريا المضاد  الكلورهيكسيدين مع  الكيرسيترين ومقارنة توضيح إلى الحالية الدراسة

 النتائج: أظهرت   .الضوئي بالمجهر وفحصها جرام بصبغة وصبغها وتحديدها، واحدة مستعمرة أخذ  تم المانيتول، ملح أجار وأوساط للون، المولد  UTI وأجار للدم، أولية زرعي وسط كل

 هذه في استخدامها تم التي المعزولة البكتريا جميع على1 -مل.ميكروغرام  3.12التركيز بنفس كان للكلوروهيكسيدين  (MIC)مثبط تركيز وأقل  (MBC)للجراثيم مبيد  تركيز أقل أن النتائج
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  .Eلبكتيريا  1 -مل ميكروغرام  800و  ،1-مل ميكروغرام   1600كان is P. gingivalو   S. aureusالعقدية للبكتيريا كيرسيتين  من مثبط تركيز أقل .استخدامه تم  تركيز  أقل وهو الدراسة

faecalis،  لـ  للجراثيم  مبيد  تركيز أقل نسبة بلغت حين فيS. mutans  وS. aureus  و P. gingivalis  3200  1600وللبكتيريا  ، 1-مل .ميكروغرام  E. faecalis 1-مل.ميكروغرام  .

 زراعة صناعة من كجزء استخدامه يمكن جديداا اكتشافاا يكون أن يمكن ما وهو للبكتيريا، المضاد  التأثير نفس له معين بتركيز كيرسيتين فإن الكلورهيكسيدين، مع الاستنتاجات: بالمقارنة
 .منها والوقاية الالتهابات على للسيطرة الزرعات حول صحي حيوي كعنصر الأسنان

 


